Ensemble Selection using Simulated Annealing Walking

نویسنده

  • Zahra Sadat Taghavi
چکیده

Pruning an ensemble of classifiers is one of the most significant and effective issues in ensemble method topic. This paper presents a new ensemble pruning method inspired by upward stochastic walking idea. Our proposed method incorporates simulated annealing algorithm and forward selection method for selecting models through the ensemble according to the probabilistic steps. Experimental comparisons of the proposed method versus similar ensemble pruning methods on a heterogeneous ensemble of classifiers demonstrate that it leads to better predictive performance and small-sized pruned ensemble. One of the reasons of these promising results is more time which our method spends for finding the best models of ensemble compared with rivals. Keywords—ensemble method, simulated annealing algorithm, forward selection method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers

In this paper, a new probabilistic model using measures of classifier competence and diversity is proposed. The multiple classifier system (MCS) based on the dynamic ensemble selection scheme was constructed using both developed measures. Two different optimization problems of ensemble selection are defined and a solution based on the simulated annealing algorithm is presented. The influence of...

متن کامل

Optimization of a stochastically simulated gene network model via simulated annealing.

By rearranging naturally occurring genetic components, gene networks can be created that display novel functions. When designing these networks, the kinetic parameters describing DNA/protein binding are of great importance, as these parameters strongly influence the behavior of the resulting gene network. This article presents an optimization method based on simulated annealing to locate combin...

متن کامل

Estimation of Software Reliability by Sequential Testing with Simulated Annealing of Mean Field Approximation

Various problems of combinatorial optimization and permutation can be solved with neural network optimization. The problem of estimating the software reliability can be solved with the optimization of failed components to its minimum value. Various solutions of the problem of estimating the software reliability have been given. These solutions are exact and heuristic, but all the exact approach...

متن کامل

A Mushy State Simulated Annealing

It is a long time that the Simulated Annealing (SA) procedure has been introduced as a model-free optimization for solving NP-hard problems. Improvements from the standard SA in the recent decade mostly concentrate on combining its original algorithm with some heuristic methods. These modifications are rarely happened to the initial condition selection methods from which the annealing schedules...

متن کامل

A Simulated Annealing Approach to Bayesian Inference

A generic algorithm for the extraction of probabilistic (Bayesian) information about model parameters from data is presented. The algorithm propagates an ensemble of particles in the product space of model parameters and outputs. Each particle update consists of a random jump in parameter space followed by a simulation of a model output and a Metropolis acceptance/rejection step based on a comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014